INTRODUCTION

- Diabetes markedly increases the risk and accelerates the course of atherosclerotic cardiovascular disease (ASCVD).¹
- While lipid-lowering therapy (LLT) has been shown to reduce ASCVD risk,² there is limited real-world evidence on the management of LDL-C in patients with clinical ASCVD and comorbid diabetes in Canada.

OBJECTIVE

- This retrospective study describes the clinical characteristics and LDL-C management of patients with ASCVD and diabetes from the health system data of Alberta, Canada, during 2011-2015.

METHODS

- **Study Design and Data Sources**
 - Retrospective observational study conducted in Alberta, Canada utilizing several provincial health system databases.

- **Study Population**
 - Patients were identified using ICD-9-CM/ICD-10-CA codes.
 - ASCVD defined as: angina, cerebrovascular disease/stroke, transient ischemic attack, coronary atherosclerosis/myocardial infarction(MI), peripheral artery disease(PAD), percutaneous coronary intervention or coronary artery bypass graft surgery.
 - The index date was the first LDL-C test date post-diagnosis.
 - Further inclusion criteria: ≥18 years with continuous enrollment, defined as having 1 year of pre-index data and ≥1 year of post-index (after ASCVD diagnosis) follow-up data.
 - Pre-existing diabetes was defined using ICD-9-CM/ICD-10-CA codes within one year prior to ASCVD identification date.
 - Patients receiving LLT were included in this analysis.

- **Study Variables**
 - Recommended LDL-C levels were defined based on a threshold of 2.0 mmol/L aligned with 2016 guideline recommendations.²
 - Follow-up LDL-C test was defined as the first test ≥2 weeks and up to 1-year after the index LDL-C test.
 - LLT were defined as statins (low, moderate-, and high-intensities), fibrates, bile acid sequestrants, nicotinic acid and derivatives, and other lipid modifying agents (omega-3 triglycerides including other esters and acids, ezetimibe, evolocumab, and alirocumab).
 - Adjunctive ezetimibe included any lipid-lowering therapy combination.

- **Statistical Analysis**
 - Patient characteristics were summarized descriptively.
 - Patients with an index and follow-up LDL-C descriptively were examined to determine threshold LDL-C levels.

RESULTS

- **Figure 1. Flow Diagram of Study Cohort**
 - Total number of ASCVD cases = 281,665
 - Total number of ASCVD cases with LDL-C test post-diagnosis = 219,488
 - Total number of ASCVD cases with LDL-C test post-diagnosis and received LLT = 144,607
 - Patients receiving LLT were included in this analysis.

- **Table 1. Patient Characteristics**
 - Patients with diabetes were more likely to have stroke, MI, or PAD.
 - Comorbid congestive heart failure was twice as common in those with diabetes.

- **Table 2. Recommended LDL-C thresholds at the index and follow-up tests among patients with ASCVD stratified by diabetes**
 - For pre-existing diabetes:
 - Total LDL-C Level: Total n = 72,637
 - LDL-C Mean (± SD): 18,214 (2.2 (± 1.0))
 - Not Achieved n (%): 29,880 (41.6)
 - Achieved n (%): 42,757 (58.4)
 - For no pre-existing diabetes:
 - Total LDL-C Level: Total n = 134,016
 - LDL-C Mean (± SD): 18,214 (2.2 (± 1.0))
 - Not Achieved n (%): 44,677 (33.5)
 - Achieved n (%): 89,339 (66.5)

LIMITATIONS

- **Health system data were not collected for research, but for hospital administration.**
- **ASCVD cases were only captured within the study period.**
- **The results reported here may be underestimated as the study identification did not include primary care data.**

CONCLUSIONS

- Patients with ASCVD and pre-existing diabetes were more likely to have stroke, MI, or peripheral arterial disease relative to those without diabetes.
- Treatment and LDL-C achieved thresholds were higher in patients with pre-existing diabetes.
- Further research is needed to examine whether the improved lipid management in patients with ASCVD and pre-existing diabetes translates to improved clinical outcomes.

REFERENCES

ACKNOWLEDGEMENTS:

This study is based on data provided by Alberta Health and CALGARY Laboratory Services. The interpretation and conclusions contained herein are those of the researchers and do not necessarily represent the views of the Government of Alberta. Neither the Government of Alberta nor Alberta Health expresses any opinion in relation to this study.

DISCLOSURES:

Chen G is a consultant for Medtronic which received funding for the study from Amgen. Francis MM and Cowling T are employed by Medtronic which received funding for the study from Amgen. Tai M, Pinto L, Colgan S, and Roogoza R are employed by Amgen who funded this study, and hold Amgen stock. Anderson T received research funding from Amgen and Merck as the local (Calgary) Principal Investigator on the Dal-corr study as well as consulting fees from Sanofi, Amgen and Bayer.

American Diabetes Association (ADA) 79th Scientific Sessions 2019, June 8, 2019; San Francisco, California. For further information, please contact: mta@amgen.com